Theoret. Chim. Acta (Berl.) 41, 269-278 (1976)
© by Springer-Verlag 1976

The Half-Projected Hartree-Fock Method

I. Eigenvalue Formulation and Simple Applications
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A SCF method based on the solution of two eigenvalue problems, in the same manner as for the
normal UHF procedure, is formulated for determining the half-projected Hartree-Fock (HPHF)
function for singlet ground states of molecules, the HPHF function being defined as a linear combination
of two Slater determinants containing only spin eigenfunctions with even quantum number. A com-
puter program has been written and is described, and results are presented for two simple linear
molecules. An important part of the correlation energy is obtained for these molecules.
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1. Introduction

There are many methods currently available for obtaining at least a part of the
correlation energy for molecules [1-8]. However, all of these methods lose the
simplicity of the restricted Hartree-Fock (RHF) formalism, and for none of them
is general application straightforward.

One way of retaining this simplicity is by using the unrestricted Hartree-Fock
(UHF) function which is also a single Slater determinant but the electrons of
opposite spins are assigned to different spatial orbitals (DODS) [9, 10]. Such a
function is not a spin eigenfunction and although it might be expected to yield an
energy lower than that of the RHF function, when taken as an approximation to
a singlet ground state, it generally does not do so due to the spin contamination
of the function. Lowdin [11] has, therefore, suggested the projected Hartree-Fock
method (PHF) in order to circumvent this problem. In this method the wave-
function, which is a spin eigenfunction, takes the form of a fixed linear combination
of Slater determinants for which the coefficients depend upon the multiplicity and
the number of pairs of electrons. The best orbitals are obtained, as in the RHF
and UHF methods, by the variational procedure. Although some calculations
have been performed with this method for small systems [12-17] it becomes
intractable for larger ones owing to the large number of determinants involved.

It has recently been suggested by Smeyers and Doreste-Suarez [17] that the
simpler two-determinant unrestricted function given by

WY =2""2(|ab,ayb,...axby|+|bia,b,a,.. . bydy|) (N
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when used as an approximation to singlet ground states, should be capable of
recovering a part of the correlation energy similarly to the PHF function. The
function may be shown [17] to contain only states with even spin quantum
number and can be expressed as the one-determinant UHF function projected on
the subspace with even spin quantum number. It is therefore referred to as the
half-projected Hartree-Fock (HPHF) function.

It may also be noted [17] that changing the sign of the second Slater deter-
minant in (1) gives a triplet, which is similarly half-projected, in that it contains
only states of odd spin quantum number.

In this paper we show how the orbitals may be optimised for the function
given by (1), we describe the computer program which has been written, and
present the results of interest for H, and BH in order to illustrate the method.

2. Theory
2.1. Derivation of an Eigenvalue Formulation

In this section we give an expression for the energy of the HPHF function of
Eq.(1), and show how the condition for this energy to be stationary with respect
to variations in the {a} and {b} orbitals can be expressed as two eigenvalue equa-
tions. We assume, without loss of generality, that all the orbitals are real, and that
the {a} and {b} each form an orthonormal set. The formulae we give are greatly
simplified by assuming the orbitals to be in “corresponding” form: i.e. that they
satisfy

{a; ‘ b,> :5ij)~i (2)

The possibility of choosing orbitals to satisfy (2), in the context of normal
UHF theory, was noted by Amos and Hall [10], and since the HPHF function,
like the UHF, is invariant to unitary transformations among each of the orbital
sets {a} and {b}, the proof of Amos and Hall may be applied without modification,
as also noted by Smeyers and Doreste-Suarez [17].

With the orbitals {a} and {b} chosen to satisfy Eq.(2), the norm of the wave-
function of Eq.(1) is

Y |¥>=1+D (3)
where
N
D=T] A 4)
i=1
is the simplified expression for the determinant of the overlap matrix between

the {a} and {b} orbitals.
We now define

N N )
El:izﬁ {<ai‘hlai>+<bi|h|bi>+%j;1 |:<aiajlg|aiaj>'“<aiajlg‘ajai>+
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which is the “unprojected” UHF energy of each Slater determinant of Eq.(1), and
N N
E,=D Zl/l{Z(ai b, > + Zl/ﬂj[2<aiaj]g[bibj> —<aga;|glb b, >]} (6)
i=1 j=1

which is the cross Hamiltonian element between the two Slater determinants. For
the total energy of the wave-function, we then have

_(Y|#|P) E,+E,
S KP|Yy 14D
We now calculate the variation in the energy with respect to variations of the
orbitals {a} and {b}. Like Smeyers and Doreste-Suarez [ 17], we use the “general-
ised Brillouin’s theorem”, which we may derive as follows:
Owing to the invariance of ¥ to a unitary transformation among the orbitals
{a}, it is sufficiently general to consider variations of the form

]ai> - |ai>+ Z 8ik|ak> 8)
k>N

E

)

where the summation runs over all “‘virtual” orbitals a;, orthogonal to every filled
{a} orbital. Under the variation (8), the change in the wave-function, to first order
in the g, i1s: '

N
P4y > el 9)
i=1 k>N
where
‘Pik:271/2(|a1l31...ak5i...aN5N|—I—Iblﬁl...biﬁk...bNﬁNl) (10)

It is then easy to show (see McWeeny and Sutcliffe [18], pp. 33-34) that the
variation in the energy is given by:

ﬁE:
Oty

Smeyers and Doreste-Suarez [ 17] appear to have solved a configuration inter-
action problem in the functions ¥, in order to optimise the orbitals, but we shall
show here how to express the condition for energy minimum in terms of a relatively
simple eigenvalue equation.

We first define the following operators:

(PP — EC | o (1)

N
Ri= Y. JaXa (122)
RY=S" |, (12b)
i=1

which are operator forms of the usual (spin-less) density matrices for the {a} and
{b} orbitals, and

N
R = .; |a; >1/4:<b;] (9
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which arises in considering cross-terms between the two determinants. R* is not
symmetric, but we may define R™ as the transpose of R,

Introducing an arbitrary basis of one-electron functions (e.g. atomic orbitals
(AO)), denoted by p,q,r,s, we define

Fo =h,,+Y [(R&+R:)<pr|glgs) — Reprlglsqy] (14a)
Fbo=h,,+ Y [(Ri+ R priglasd — R} prlglsgd] (14b)

as the Hartree-Fock matrix elements arising in normal UHF theory, and the
“cross-term”

Foa=hy+ Y [2R3prlglas) — Rypriglsa)] (15)

Owing to the exchange term in (15), F** is not symmetric, but, again, we may define
F"* a5 its transpose.

Using the definitions of F* and F® above, and the methods described by
McWeeny and Sutcliffe [18], the variation in the energy (Eq.(11)) can be written
as follows:

OE
58-k ={q; lFaiak> +D/2.<b; ‘Fbalak> +(E,—DE)/2<b; lak> -

N
—D/4, ‘; 1/A<b;|agy<{b;|F*|a;» (16)

The condition for the energy to be stationary with respect to variations in the {a}
orbitals, is then that the above expression should be zero for all filled orbitals i,
and all virtual orbitals k. To reduce this condition to an eigenvalue equation, we
introduce the Hermitian operator:

H®=F"+(R® + R")(E,~ DE)+ D{R®F"(1 — R®) + (1 — R")F*R"} (17)

Now

OE .
5. = <l as)

12

To prove (18), it is only necessary to make use of the following properties of R*,
which follow immediately from the definition, Eq.(13):

N
R | By = ‘Z1 1/4Kb; | ay l a;y (19a)
R™|a>=0 (19b)
R | ay=1/4; | Ly (19¢)

Variations of the {b} orbitals can be treated by an exactly analogous argument.
Thus, letting

Ibi> - Ibi> + k;v N | by (20)
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we have

oE .
5y = B0 @D

where
HP=F"+(R*®+ R")(E,— DE) + D{R™F*(1— R"*)+(1 —R"”)F”"R“”} (22)

The condition for the energy to be stationary is thus that H* and H?® should have
no matrix elements between filled and empty {a} and {b} orbitals respectively.
Owing to invariance of ¥ under unitary transformations among the sets {a} and
{b}, we may choose “‘canonical” sets which completely diagonalise the operators.
Thus the HPHF orbitals are found from the two eigenvalue equations:

H*|ay=¢f|a)

HY| by =t | b )

Clearly the operators H® and H® depend, in an even more complex way than
in normal UHF theory, on the orbitals {¢} and {b} themselves. Thus, starting
from an initial guess to the orbitals, the problem must be solved in an iterative
way to reach a self-consistent solution.

As with ordinary HF theory, it is not obvious that such a procedure will con-
verge unaided. However, it is very easy to incorporate the “level-shift”” method
described by Hillier and Saunders [19]: this involves adding a constant to the
virtual diagonal elements of the HF matrix before diagonalisation. It is easy to
transfer the arguments of Ref. [19], and show that, as in HF theory, a sufficiently
large level shift will guarantee convergence of the HPHF procedure described here.

Although we have used “‘corresponding orbitals”, satisfying Eq.(2), to cal-
culate the form of the operators in Eqgs.(17) and (18), the orbitals resulting from
diagonalising these operators will almost certainly not satisfy this condition. It
would be possible, after each SCF iteration, to calculate the transformation re-
quired from canonical to corresponding forms, but this is unnecessary, since, in
the final formulae for H* and H?, the corresponding orbitals only enter through
the definition of R“. This operator may be calculated directly from a general
basis of {a} and {b} orbitals:

Let
S?jbz {4 | bj>

be the overlap matrix of {a} and {b} orbitals in such a general basis, and T** be
its inverse. Then

N
R“’Jz' 21 |a;>T%<b;| (24)

L,1=
Throughout this section we have assumed the singlet form of the wave-function,
Eq.(1). In the triplet form the second Slater determinant has the opposite sign,
and it is easy to see that all the formulae given here are still valid, provided we
simply change the sign of D, defined in Eq.(3). Thus the method described here

should be equally capable of calculating the lowest triplet state of a molecule.
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Evidently the formulae given here only apply if none of the A; of Eq.(2) are
zero, that is, if the overlap matrix between {a} and {b} orbitals is non-singular. If
one of the A, is zero, the energy is given by the simpler expression

E=E,+Da,b,|gb,a,> (25)

where 4,=0. E is still given by Eq.(5), and

D=1 A}

i#tp
The most likely situation in which this will happen is if a, and b, are localised
on different atoms in a dissociated molecule, and this case the exchange integral
between these orbitals will vanish. £ is now equal to the sum of the UHF energies
of the different atoms. Thus the HPHF function for the dissociation limit of a
molecule should have the same energy as the sum of the UHF energies of the

separated fragments. This is an important improvement over the RHF theory
(see McWeeny and Sutcliffe [18] pp. 121).

2.2. Some Properties of the Wave-Function

Of interest for calculating one-electron properties of the HPHF wave-function
is the total one-electron spiniess density matrix. In terms of the operators defined
in Egs.(12) and (13), this may be written

RT=(14+D) '{R*+ R®+ D(R® + Rb)} (26)

Natural orbitals (NO) are defined as the eigenfunctions of the spinless density
matrix, and are useful for comparing the results of different methods of calculating
electron correlation [20]. Using Eq.(26) and the definitions of Egs.(12) and (13),
it is easy to show that the NO’s are linear combinations of the {¢} and {b} corres-
ponding orbitals: thus

R™(ja) +[p) =1 +D)~ (1 + 4+ D+D/A)a> + b)) (27a)
R7(ja;y—[b:>) =1 +D)"*(1 =4+ D—D/A:X|ar> — b)) (27b)

The NO occupations are thus a function of the “splitting” between the {a} and
{b} orbitals, measured by the overlap 4;. In the limit where 4, = 1, these occupations
become 2 and 0.

The formula for the occupations offer an interesting comparison between the
HPHF and the unprojected UHF wave-functions. Amos and Hall [10] derived
identical expressions for the NO’s of a UHF function, to those given in Eqs.(27);
however, the occupations are 1+ 4, and 1 — 4, respectively. In order to give appre-
ciable correlation between electrons in g; and b;, we must have 4, appreciably less
than one. However, with 1=0.9 we have NO occupations of 1.9 and 0.1 for
simple UHF. The figure of 0.1 for the orbital of small occupation is rather too
high. This may be an important reason, quite separate from the problem of spin
contamination, why UHF for closed-shell systems often gives the same result as
RHF. For the HPHF function the occupations depend, through D, on the splittings
of all the orbitals. If we assume that only one orbital is appreciably split, with
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A=0.9, so that D =0.81, we derive an occupation number of 0.0055 for the weakly
occupied NO, which is more reasonable. However, the situation is less satisfactory
if several orbitals are appreciably split: for example, if five orbitals in the HPHF
function each have 1=0.9, the corresponding NO occupation numbers are 0.045,
which is rather high, although still not as high as the single UHF. These con-
siderations lead us to anticipate that the HPHF wave-function may give a satis-
factory description of correlation in one, or at most very few orbitals, but will not
be capable of describing simultaneous correlation in many orbitals. A similar
conclusion follows from considering spin contamination.

It is easy to show that the expectation value of & 2 for the HPHF wave-function
is given by

Py ¥
W_N—(l +D) ! El (2 +D/A?) (28)

The corresponding value for simple UHF is

N
N-—> a2 (29)

i#1
Since A7 <1 for all 7, it can be seen that the value of (28) is always less than (29),
but by an amount which depends on the relative values of the 4. Returning to the
two illustrative examples which we used in the previous paragraph, we can see
that if only one A is different from unity, . for the HPHF function is zero: i.e.
in this case the function describes a pure singlet. With five orbitals having A=0.9,
however, we obtain a value of %2 of about 0.55, indicating strong spin contamina-
tion (about 10% of quintet); the unprojected UHF value in this case is 0.95. This
strongly reinforces our conclusion of the previous paragraph, since it appears that
the HPHF wave function cannot describe correlation between many pairs of
electrons simultaneously, without introducing an unacceptable degree of spin

contamination.

3. Computational Procedure and Testing

The HPHF method described here has been programmed in FORTRAN for
the Univac 1108 computer. The steps of the calculation are similar to those for a
conventional UHF method, except that the overlap matrix between {a} and {b}
orbitals must be calculated and inverted, to obtain the matrices R*® and F** from
Eqgs.(24) and (15). To make use of the level-shift procedure [197] and to speed up
the diagonalisation, the matrices H* and H?® are calculated in the basis of trial
{a} and {b} orbitals respectively. Both in storage requirements and in time per
iteration, the calculation represents an approximately two-fold increase over
simple UHF.

As trial orbitals for the first iteration, it seems reasonable to take vectors close
to the RHF solution. Since the RHF vectors are themselves a solution to the
HPHF equations, corresponding to a saddle-point on the energy surface, it is
necessary to split the {a} and {b} orbitals before starting the calculation. This we
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do by mixing selected filled and virtual orbitals, with coefficients which have
opposite signs for {a} and {b} sets.

The case of H, offers a very convenient test of the method and the programme,
since for a two-electron system the HPHF function is not only a pure singlet, but
is also equivalent to a two-configuration MC-SCF function [12]. Using a basis-
set described previously [8], and with an initial mixing of some 1o, virtual orbital
into the RHF 1o, the energy converged steadily towards the two-configuration
MC-SCF value [8]. However, as well as this solution (which has the lowest
energy), we found it possible to obtain three other solutions with energy lower
than the RHF value, by initially mixing virtual orbitals of different symmetry into
the RHF filled orbital. We shall discuss the problem of multiple solutions in a
later paper.

4. Results for Boron Hydride

We shall now discuss the results obtained, at several levels of approximation
including the HPHF method, for the ground state (*~*) of BH. The calculations
described here have been performed using the uncontracted (9,5/4) Gaussian basis
of Huzinaga [22], for which the Hls function was scaled by 1.2, augmented by
single sets of d- and p- type polarization functions on the B and H atoms respec-
tively, the exponents chosen for these functions being d=0.55 and p=0.9. This
uncontracted basis was then contracted to (4,2,1/2,1) according to Dunning [23].
For the calculations described below all the SCF orbitals were restricted to be o
symmetry orbitals, unless otherwise indicated.

In Table 1 we compare the results of our HPHF calculations with those of
other studies [24-307 and with experiment [31-32] for some spectroscopic
properties of BH. It can be seen that the HPHF method compares very favourably
with the more complex methods, and of course is in much better agreement with
the experimental dissociation energy (De) than is the RHF method. Our calculated
SCF error in De (compare near RHF limit calculation of Cade and Huo [24] is

Table 1. Total energies, dissociation energies and equilibrium internuclear
distances calculated using several methods for the X !X state of BH

E(hartree) De (eV) Re (A)

Hartree-Fock® —25.1315 2.78 1.200
Valence bond? ~25.1456 2.45 1.342
Large CI° —25.2621 - -

Separated pair? ~25.2054 3.86 1.230
Spin-optimized SCF¢ —25.1664 3.28 1.250
Valence bond / —25.1454 2.98 1.337
Optimized first-order CI¢ —25.1798 3.27 1.276
HPHF —25.1405 3.09 1.273
Experiment® - 3.54+0.04 1.236

¢ See Ref. [24].
b See Ref. [25].
¢ See Ref. {26].
4 See Ref. [27].

¢ See Ref. [28].
/ See Ref. [29].
7 See Ref. [30].
" See Refs. [31] and [32].



The Half-Projected Hartree-Fock Method 277

Table 2. Natural-orbital occupation numbers for various internuclear
separations® calculated using the HPHF method for BH

20 3o 40 5o

R=2.41 1.999 1.977 0.023 0.001
R=5.0 1.998 1.584 0.416 0.002
R=10.0 1.998 1.021 0.979 0.002

* Internuclear separations are given in bohr.

Table 3. Calculated total energies and expectation values of %2 for the RHF, UHF, HPUHF* and
HPHF methods for three internuclear separations’® for BH

E(hartree) (L2

RHF UHF HPUHF HPHF UHF HPUHF HPHF
R=2.41 —25.1243 —25.1243 —25.1243 —25.1404 0.0 0.0 0.0026
R=5.0 —24.9698 —25.0304 —25.0432 —25.0440 0.8948 0.0067 0.0077
R=10.0 —24.8373 —25.0270 —25.0271 —25.0271 1.0043 0.0088 0.0088

“ This is a function of the HPHF type with the orbitals as determined in the UHF calculation.
b Internuclear separations are given in bohr.

about 0.13 eV and since this error can also probably be carried over to the HPHF
calculation, our agreement with experiment would probably be even better with
an improved basis set. The NO occupation numbers, given by Eq.(27), are shown,
as a function of three internuclear separations (R), in Table 2. They may be com-
pared with the results obtained from an optimised first-order wave-function (see
Table 5 of Ref. [30]), the 30, 40 and 50 occupation numbers being very similar in
both cases. Table 3 gives an interesting comparison of the calculated values for
the total energy and (%2> for several methods as a function of R.

As has been mentioned in a previous section, it has been found that on remov-
ing the symmetry restriction, other solutions may be obtained. Over a wide range
of R for BH it is possible to obtain at least one non-symmetry solution, in which
the NO’s are not all ¢ orbitals. This has been found true not only for the HPHF
method but also for the UHF method. The nature of these solutions appears to
change as a function of R, “o-type” correlation being preferred at large distances
(>3.5 bohr) and “rn-type” correlation being preferred at shorter distances
(< 2.8 bohr). For all R it has been found possible to obtain both UHF and HPHF
solutions lower in energy than the corresponding RHF solutions, although the
UHF wave-function always has an appreciable spin contamination. One such
additional solution occurs for the HPHF method at R of 2.4 bohr with an energy
of —25.1451 Hartree and (¥ 2)>=0.0005. The NO’s with occupation numbers
appreciably different from either 2 or 0 are a ¢ NO with occupation number of
1.910 and a = NO with occupation number of 0.090.

5. Conclusions

In the present work, we have given a simple and practicable method for the
calculation of HPHF wave-functions. The computational effort required is only
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a factor of two greater than the simple UHF method. This simplicity may be con-
trasted with the extremely complicated equations arising in fully-projected methods
[33]. Results have been presented for the simple molecule BH, and although the
method does not appear to recover a large proportion of the total correlation
energy, there is a sufficiently large improvement over RHF that the method de-
serves to be investigated further. These investigations, and a discussion of the
problem of multiple solutions, will be presented in a subsequent paper.
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